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Key Points
• Multiple encryption is a technique in which an encryption 

algorithm is used multiple times. 


• In the first instance, plaintext is converted to ciphertext using 
the encryption algorithm. 


• This ciphertext is then used as input and the algorithm is 
applied again. 


• This process may be repeated through any number of 
stages.


• Triple DES makes use of three stages of the DES algorithm, 
using a total of two or three distinct keys.
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Key Points
• A mode of operation is a technique for enhancing the effect of a 

crypto-graphic algorithm or adapting the algorithm for an 
application, such as applying a block cipher to a sequence of data 
blocks or a data stream.


• Five modes of operation have been standardized by NIST for use 
with symmetric block ciphers such as DES and AES


• (1) electronic codebook mode  (2) cipher block chaining mode 
(3) cipher feedback mode (4) output feed-back modecounter 
mode (5)


• A stream cipher is a symmetric encryption algorithm in which 
ciphertext output is produced bit-by-bit or byte-by-byte from a 
stream of plaintext input. The most widely used such cipher is RC4.
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1. Multiple Encryption and Triple DES

Motivation

• The cons of DES 


• Brute-force attacks


• Approaches


• AES, or


• use multiple encryption with DES and multiple keys


• Question: How many encryption stages?
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1. Multiple Encryption and Triple DES

(1) Double DES

• The simplest form of multiple encryption has two encryption stages 
and two keys 


• Encryption：


• Decryption：
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Figure 6.1 Multiple Encryption

simplest example of this second alternative. We then look at the widely accepted
triple DES (3DES) approach.

Double DES

The simplest form of multiple encryption has two encryption stages and two keys
(Figure 6.1a). Given a plaintext and two encryption keys and , ciphertext 
is generated as

Decryption requires that the keys be applied in reverse order:

For DES, this scheme apparently involves a key length of bits, result-
ing in a dramatic increase in cryptographic strength. But we need to examine the
algorithm more closely.

56 * 2 = 112

P = D(K1, D(K2, C))

C = E(K2, E(K1, P))

CK2K1P
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simplest example of this second alternative. We then look at the widely accepted
triple DES (3DES) approach.

Double DES

The simplest form of multiple encryption has two encryption stages and two keys
(Figure 6.1a). Given a plaintext and two encryption keys and , ciphertext 
is generated as

Decryption requires that the keys be applied in reverse order:

For DES, this scheme apparently involves a key length of bits, result-
ing in a dramatic increase in cryptographic strength. But we need to examine the
algorithm more closely.

56 * 2 = 112

P = D(K1, D(K2, C))

C = E(K2, E(K1, P))

CK2K1P

56bit 56bit

Complexity of attacks：2112 ???
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1. Multiple Encryption and Triple DES

(1) Double DES

• Meet-in-the-middle attack (中间相遇攻击)

Cryptography: Lecture Notes 55

Linear and diÆerential cryptanalysis were however more devastating when applied to other ciphers, some of
which succumbed completely to the attack.

So what’s the best possible attack against DES? The answer is exhaustive key search. What we ignored above
is that the DES computations in this attack can be performed in parallel. In 1993, Weiner argued that one can
design a $1 million machine that does the exhaustive key search for DES in about 3.5 hours on the average [207].
His machine would have about 57,000 chips, each performing numerous DES computations. More recently, a
DES key search machine was actually built by the Electronic Frontier Foundation, at a cost of $250,000 [88]. It
finds the key in 56 hours, or about 2.5 days on the average. The builders say it will be cheaper to build more
machines now that this one is built.

Thus DES is feeling its age. Yet, it would be a mistake to take away from this discussion the impression that
DES is a weak algorithm. Rather, what the above says is that it is an impressively strong algorithm. After all
these years, the best practical attack known is still exhaustive key search. That says a lot for its design and its
designers.

Later we will see that we would like security properties from a block cipher that go beyond resistance to key-
recovery attacks. It turns out that from that point of view, a limitation of DES is its block size. Birthday
attacks “break” DES with about q = 232 input output examples. (The meaning of “break” here is very diÆerent
from above.) Here 232 is the square root of 264, meaning to resist these attacks we must have bigger block size.
The next generation of ciphers—things like AES—took this into account.

4.4 Iterated-DES and DESX

The emergence of the above-discussed key-search engines lead to the view that in practice DES should be
considered broken. Its shortcoming was its key-length of 56, not long enough to resist exhaustive key search.

People looked for cheap ways to strengthen DES, turning it, in some simple way, into a cipher with a larger key
length. One paradigm towards this end is iteration.

4.4.1 Double-DES

Let K1, K2 be 56-bit DES keys and let M be a 64-bit plaintext. Let

2DES(K1kK2,M) = DES(K2, DES(K1,M)) .

This defines a block cipher 2DES: {0, 1}112 £ {0, 1}64 ! {0, 1}64 that we call Double-DES. It has a 112-bit key,
viewed as consisting of two 56-bit DES keys. Note that it is reversible, as required to be a block cipher:

2DES°1(K1kK2, C) = DES°1(K1, DES°1(K2, C)) .

for any 64-bit C.

The key length of 112 is large enough that there seems little danger of 2DES succumbing to an exhaustive key
search attack, even while exploiting the potential for parallelism and special-purpose hardware. On the other
hand, 2DES also seems secure against the best known cryptanalytic techniques, namely diÆerential and linear
cryptanalysis, since the iteration eÆectively increases the number of Feistel rounds. This would indicate that
2DES is a good way to obtain a DES-based cipher more secure than DES itself.

However, although 2DES has a key-length of 112, it turns out that it can be broken using about 257 DES and
DES°1 computations by what is called a meet-in-the-middle attack, as we now illustrate. Let K1kK2 denote
the target key and let C1 = 2DES(K1kK2, M1). The attacker, given M1, C1, is attempting to find K1kK2. We
observe that

C1 = DES(K2,DES(K1,M1)) ) DES°1(K2, C1) = DES(K1, M1) .

This leads to the following attack. Below, for i = 1, . . . , 256 we let Ti denote the i-th 56-bit string (in lexicographic
order):
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1. Multiple Encryption and Triple DES

(1) Double DES

• Given a known pair 


• Encrypt  for all  possible values of 


• Store these results in a table and then sort the table by the values of 
 


• Decrypt  using all  possible values of 


• As each decryption is produced, check the result against the table for a 
match 


• If a match occurs, then test the two resulting keys against a new known 
plaintext–ciphertext pair 


• The complexity of the above operation: 257

(M, C)

M 256 K1

DES(K1, M)

C 256 K2
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1. Multiple Encryption and Triple DES

(1) Double DES

• Meet-in-the-middle attack (中间相遇攻击)

56 Goldwasser and Bellare

MinM2DES(M1, C1)
for i = 1, . . . , 256 do L[i]√ DES(Ti,M1)
for j = 1, . . . , 256 do R[j]√ DES°1(Tj , C1)
S √ { (i, j) : L[i] = R[j] }
Pick some (l, r) 2 S and return TlkTr

For any (i, j) 2 S we have
DES(Ti,M1) = L[i] = R[j] = DES°1(Tj , C1)

and as a consequence DES(Tj ,DES(Ti,M1)) = C1. So the key TikTj is consistent with the input-output example
(M1, C1). Thus,

{ TlkTr : (l, r) 2 S } = ConsE((M1, C1)) .

The attack picks some pair (l, r) from S and outputs TlkTr, thus returning a key consistent with the input-output
example (M1, C1).

The set S above is likely to be quite large, of size about 256+56/264 = 248, meaning the attack as written is not
likely to return the target key itself. However, by using a few more input-output examples, it is easy to whittle
down the choices in the set S until it is likely that only the target key remains.

The attack makes 256 + 256 = 257 DES or DES°1 computations. The step of forming the set S can be
implemented in linear time in the size of the arrays involved, say using hashing. (A naive strategy takes time
quadratic in the size of the arrays.) Thus the running time is dominated by the DES,DES°1 computations.

The meet-in-the-middle attack shows that 2DES is quite far from the ideal of a cipher where the best attack
is exhaustive key search. However, this attack is not particularly practical, even if special purpose machines
are designed to implement it. The machines could do the DES, DES°1 computations quickly in parallel, but to
form the set S the attack needs to store the arrays L, R, each of which has 256 entries, each entry being 64 bits.
The amount of storage required is 8 · 257 º 1.15 · 1018 bytes, or about 1.15 · 106 terabytes, which is so large that
implementing the attack is impractical.

There are some strategies that modify the attack to reduce the storage overhead at the cost of some added time,
but still the attack does not appear to be practical.

Since a 112-bit 2DES key can be found using 257 DES or DES°1 computations, we sometimes say that 2DES
has an eÆective key length of 57.

4.4.2 Triple-DES

The triple-DES ciphers use three iterations of DES or DES°1. The three-key variant is defined by

3DES3(K1kK2kK3,M) = DES(K3,DES°1(K2,DES(K1,M)) ,

so that 3DES3: {0, 1}168 £ {0, 1}64 ! {0, 1}64. The two-key variant is defined by

3DES2(K1kK2,M) = DES(K2, DES°1(K1, DES(K2,M)) ,

so that 3DES2: {0, 1}112£ {0, 1}64 ! {0, 1}64. You should check that these functions are reversible so that they
do qualify as block ciphers. The term “triple” refers to there being three applications of DES or DES°1. The
rationale for the middle application being DES°1 rather than DES is that DES is easily recovered via

DES(K, M) = 3DES3(KkKkK, M) (4.1)

DES(K, M) = 3DES2(KkK, M) . (4.2)

As with 2DES, the key length of these ciphers appears long enough to make exhaustive key search prohibitive,
even with the best possible engines, and, additionally, diÆerential and linear cryptanalysis are not particularly
eÆective because iteration eÆectively increases the number of Feistel rounds.

3DES3 is subject to a meet-in-the-middle attack that finds the 168-bit key using about 2112 computations of
DES or DES°1, so that it has an eÆective key length of 112. There does not appear to be a meet-in-the-middle
attack on 3DES2 however, so that its key length of 112 is also its eÆective key length.

56 Goldwasser and Bellare
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do qualify as block ciphers. The term “triple” refers to there being three applications of DES or DES°1. The
rationale for the middle application being DES°1 rather than DES is that DES is easily recovered via

DES(K, M) = 3DES3(KkKkK, M) (4.1)

DES(K, M) = 3DES2(KkK, M) . (4.2)

As with 2DES, the key length of these ciphers appears long enough to make exhaustive key search prohibitive,
even with the best possible engines, and, additionally, diÆerential and linear cryptanalysis are not particularly
eÆective because iteration eÆectively increases the number of Feistel rounds.

3DES3 is subject to a meet-in-the-middle attack that finds the 168-bit key using about 2112 computations of
DES or DES°1, so that it has an eÆective key length of 112. There does not appear to be a meet-in-the-middle
attack on 3DES2 however, so that its key length of 112 is also its eÆective key length.

• Question: Is the attack correct?
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1. Multiple Encryption and Triple DES

(1) Double DES

• Analysis


• For any given plaintext  


•  possible ciphertext values,   possible keys


• How many keys can produce a given ciphertext ?


• 


• i.e., false alarm rate: 


• For two blocks of known plaintext–ciphertext


•  ciphertext values,  possible keys 


• How many possible ciphertexts correspond to a key on average?


•  


• i.e., false alarm rate: 

M
264 2112

C
2112/264 = 248

1 − 2−48

2128 2112

2128/2112 = 216

2−16
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there are possible keys. Therefore, on average, for a given plaintext , the
number of different 112-bit keys that will produce a given ciphertext is

. Thus, the foregoing procedure will produce about false alarms
on the first pair. A similar argument indicates that with an additional 64 bits
of known plaintext and ciphertext, the false alarm rate is reduced to .
Put another way, if the meet-in-the-middle attack is performed on two blocks of
known plaintext–ciphertext, the probability that the correct keys are determined
is . The result is that a known plaintext attack will succeed against double
DES, which has a key size of 112 bits, with an effort on the order of , which is
not much more than the required for single DES.

Triple DES with Two Keys

An obvious counter to the meet-in-the-middle attack is to use three stages of
encryption with three different keys. This raises the cost of the meet-in-the-middle
attack to , which is beyond what is practical now and far into the future.
However, it has the drawback of requiring a key length of bits, which
may be somewhat unwieldy.

As an alternative, Tuchman proposed a triple encryption method that uses
only two keys [TUCH79]. The function follows an encrypt-decrypt-encrypt (EDE)
sequence (Figure 6.1b):

There is no cryptographic significance to the use of decryption for the second
stage. Its only advantage is that it allows users of 3DES to decrypt data encrypted by
users of the older single DES:

3DES with two keys is a relatively popular alternative to DES and has been
adopted for use in the key management standards ANS X9.17 and ISO 8732.1

Currently, there are no practical cryptanalytic attacks on 3DES. Coppersmith
[COPP94] notes that the cost of a brute-force key search on 3DES is on the order of

and estimates that the cost of differential cryptanalysis suffers an
exponential growth, compared to single DES, exceeding .

It is worth looking at several proposed attacks on 3DES that, although not
practical, give a flavor for the types of attacks that have been considered and that
could form the basis for more successful future attacks.

The first serious proposal came from Merkle and Hellman [MERK81]. Their
plan involves finding plaintext values that produce a first intermediate value of A = 0

1052
2112 L (5 * 1033)

P = D(K1, E(K1, D(K1, C))) = D(K1, C)

C = E(K1, D(K1, E(K1, P))) = E(K1, P)

P = D(K1, E(K2, D(K1, C)))

C = E(K1, D(K2, E(K1, P)))

56 * 3 = 168
2112

255
256

1 - 2- 16

248 - 64 = 2- 16
(P, C)

2482112/264 = 248
C

P2112

1American National Standard (ANS): Financial Institution Key Management (Wholesale). From its title,
X9.17 appears to be a somewhat obscure standard. Yet a number of techniques specified in this standard
have been adopted for use in other standards and applications, as we shall see throughout this book.

• Key management standards ANS X9.17 and ISO 
8732
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Figure 6.1 Multiple Encryption

simplest example of this second alternative. We then look at the widely accepted
triple DES (3DES) approach.

Double DES

The simplest form of multiple encryption has two encryption stages and two keys
(Figure 6.1a). Given a plaintext and two encryption keys and , ciphertext 
is generated as

Decryption requires that the keys be applied in reverse order:

For DES, this scheme apparently involves a key length of bits, result-
ing in a dramatic increase in cryptographic strength. But we need to examine the
algorithm more closely.

56 * 2 = 112

P = D(K1, D(K2, C))

C = E(K2, E(K1, P))

CK2K1P
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1. Multiple Encryption and Triple DES

(2) Triple DES with Two Keys 


• Proposed attack 1 (Impractical attack?)

• 256 chosen plaintext-ciphertext (256 is impractically large)


• For K1=0~256

• Set A=0,  compute P using K1

• Choose (P, C), then compute B


• For K2=0~256


• Since A=0, compute B using K2
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• Proposed attack 2

• Known-plaintext attack
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(Figure 6.1b) and then using the meet-in-the-middle attack to determine the two keys.
The level of effort is , but the technique requires chosen plaintext–ciphertext
pairs, which is a number unlikely to be provided by the holder of the keys.

A known-plaintext attack is outlined in [VANO90]. This method is an
improvement over the chosen-plaintext approach but requires more effort.
The attack is based on the observation that if we know and (Figure 6.1b),
then the problem reduces to that of an attack on double DES. Of course,
the attacker does not know , even if and are known, as long as the two keys
are unknown. However, the attacker can choose a potential value of and then
try to find a known pair that produces . The attack proceeds as follows.

1. Obtain pairs.This is the known plaintext. Place these in a table (Table 1)
sorted on the values of (Figure 6.2b).

2. Pick an arbitrary value for , and create a second table (Figure 6.2c) with
entries defined in the following fashion. For each of the possible keys ,
calculate the plaintext value that produces :

For each that matches an entry in Table 1, create an entry in Table 2 consisting of
the value and the value of that is produced for the pair from Table 1,
assuming that value of :

At the end of this step, sort Table 2 on the values of .B

B = D(i, C)

K1

(P, C)BK1

Pi

Pi = D(i, a)

aPi

K1 = i256
Aa

P
n (P, C)

A(P, C)
A

CPA

CA

256256

E D E

i j i
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a Bj

(a) Two-key triple encryption with candidate pair of keys
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Pi Ci

(b) Table of n known
plaintext-ciphertext
pairs, sorted on P

Bj Key i

(c) Table of intermediate
values and candidate

keys

Figure 6.2 Known-Plaintext Attack on Triple DES

1. Obtain ( ) pairs, and Create table 1


2. Pick an arbitrary value 

• Repeat:


• For =0~ 


• Compute  from  and 


• If ( ) is in table 1


• Compute  from  and 


• Create ( ) in table 2


3. For =0~ , compute  from  and 


4. If  is in table 2, output result ( )

P, C
a

i 256

Pi a i
Pi, Ci

B i Ci

B, i
j 256 Bj j a

Bj i | | j
复杂度：
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3. We now have a number of candidate values of in Table 2 and are in a position
to search for a value of . For each of the possible keys , calculate the
second intermediate value for our chosen value of :

At each step, look up in Table 2. If there is a match, then the corresponding key
from Table 2 plus this value of are candidate values for the unknown keys

.Why? Because we have found a pair of keys that produce a known
pair (Figure 6.2a).

4. Test each candidate pair of keys on a few other plaintext–ciphertext pairs.
If a pair of keys produces the desired ciphertext, the task is complete. If no pair
succeeds, repeat from step 1 with a new value of .

For a given known , the probability of selecting the unique value of 
that leads to success is . Thus, given pairs, the probability of success
for a single selected value of is . A basic result from probability theory
is that the expected number of draws required to draw one red ball out of a
bin containing red balls and green balls is if the balls
are not replaced. So the expected number of values of that must be tried is,
for large ,

Thus, the expected running time of the attack is on the order of

Triple DES with Three Keys

Although the attacks just described appear impractical, anyone using two-key 3DES
may feel some concern. Thus, many researchers now feel that three-key 3DES is the
preferred alternative (e.g., [KALI96a]). Three-key 3DES has an effective key length
of 168 bits and is defined as

Backward compatibility with DES is provided by putting or .
A number of Internet-based applications have adopted three-key 3DES,

including PGP and S/MIME, both discussed in Chapter 18.

6.2 ELECTRONIC CODE BOOK

A block cipher takes a fixed-length block of text of length bits and a key as input
and produces a -bit block of ciphertext. If the amount of plaintext to be encrypted is
greater than bits, then the block cipher can still be used by breaking the plaintextb

b
b

K1 = K2K3 = K2

C = E(K3, D(K2, E(K1, P)))

A256 B 264

n
= 2120 - log2n

264 + 1
n + 1

L 264

n

n
a

(N + 1)/(n + 1)N - nn

n/264a
n (P, C)1/264

a(P, C)

a

(i, j)
(P, C)

(i, j)(K1, K2)
ji

Bj

Bj = D(j, a)

a
K2 = j256K2

K1

Table 1 Table 2
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3. We now have a number of candidate values of in Table 2 and are in a position
to search for a value of . For each of the possible keys , calculate the
second intermediate value for our chosen value of :

At each step, look up in Table 2. If there is a match, then the corresponding key
from Table 2 plus this value of are candidate values for the unknown keys

.Why? Because we have found a pair of keys that produce a known
pair (Figure 6.2a).

4. Test each candidate pair of keys on a few other plaintext–ciphertext pairs.
If a pair of keys produces the desired ciphertext, the task is complete. If no pair
succeeds, repeat from step 1 with a new value of .

For a given known , the probability of selecting the unique value of 
that leads to success is . Thus, given pairs, the probability of success
for a single selected value of is . A basic result from probability theory
is that the expected number of draws required to draw one red ball out of a
bin containing red balls and green balls is if the balls
are not replaced. So the expected number of values of that must be tried is,
for large ,

Thus, the expected running time of the attack is on the order of

Triple DES with Three Keys

Although the attacks just described appear impractical, anyone using two-key 3DES
may feel some concern. Thus, many researchers now feel that three-key 3DES is the
preferred alternative (e.g., [KALI96a]). Three-key 3DES has an effective key length
of 168 bits and is defined as

Backward compatibility with DES is provided by putting or .
A number of Internet-based applications have adopted three-key 3DES,

including PGP and S/MIME, both discussed in Chapter 18.

6.2 ELECTRONIC CODE BOOK

A block cipher takes a fixed-length block of text of length bits and a key as input
and produces a -bit block of ciphertext. If the amount of plaintext to be encrypted is
greater than bits, then the block cipher can still be used by breaking the plaintextb
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• Although the attacks just described appear 
impractical, anyone using two-key 3DES may feel 
some concern 


• Another solution: Triple DES with Three Keys 

• PGP


• S/MIME
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2. Modes of operation
Mode Description Application

电码本（ECB）

Electronic CodeBook


Encryption of single values 
e.g., a key

密⽂分组链接 (CBC)

Cipher Block Chaining

 General-purpose block- 
oriented transmission;


Authentication

密⽂反馈 (CFB)

Cipher FeedBack

Select 

s bits 


 General-purpose block- 
oriented transmission;


Authentication

输出反馈(OFB)

Output FeedBack

 Stream-oriented transmission 
over noisy channel 

计数器 (CTR)

Counter

 General-purpose block- 
oriented transmission;


High speed

cipher = out� plain

in = plain� outprev

cipher = out

cipher = out� plain

cipher = out� plain
in = counter

cipher = out

in = plain

in = cipherprev � shift

in = outprev
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Figure 6.3 Electronic Codebook (ECB) Mode

The ECB method is ideal for a short amount of data, such as an encryption
key. Thus, if you want to transmit a DES or AES key securely, ECB is the appropri-
ate mode to use.

The most significant characteristic of ECB is that if the same -bit block of
plaintext appears more than once in the message, it always produces the same
ciphertext.

For lengthy messages, the ECB mode may not be secure. If the message is highly
structured, it may be possible for a cryptanalyst to exploit these regularities. For exam-
ple, if it is known that the message always starts out with certain predefined fields, then
the cryptanalyst may have a number of known plaintext–ciphertext pairs to work with.
If the message has repetitive elements with a period of repetition a multiple of bits,
then these elements can be identified by the analyst. This may help in the analysis or
may provide an opportunity for substituting or rearranging blocks.

b

b

ECB Cj = E(K, Pj) j = 1, Á , N Pj = D(K, Cj) j = 1, Á , N

corresponding sequence of ciphertext blocks is . We can define
ECB mode as follows.

C1, C2, Á , CN

2. Modes of operation

(1)  ECB (electronic codebook )
• Process
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The ECB method is ideal for a short amount of data, such as an encryption
key. Thus, if you want to transmit a DES or AES key securely, ECB is the appropri-
ate mode to use.

The most significant characteristic of ECB is that if the same -bit block of
plaintext appears more than once in the message, it always produces the same
ciphertext.

For lengthy messages, the ECB mode may not be secure. If the message is highly
structured, it may be possible for a cryptanalyst to exploit these regularities. For exam-
ple, if it is known that the message always starts out with certain predefined fields, then
the cryptanalyst may have a number of known plaintext–ciphertext pairs to work with.
If the message has repetitive elements with a period of repetition a multiple of bits,
then these elements can be identified by the analyst. This may help in the analysis or
may provide an opportunity for substituting or rearranging blocks.

b

b

ECB Cj = E(K, Pj) j = 1, Á , N Pj = D(K, Cj) j = 1, Á , N

corresponding sequence of ciphertext blocks is . We can define
ECB mode as follows.

C1, C2, Á , CN

cipher = out in = plain

• Observation


• Fit for encryption of single values


• E.g., keys


• Possibly insecure for lengthy 
messages


• Repetitive elements
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2. Modes of operation

(2) CBC (cipher block chaining )

• Observation


• Achieves confidentiality


• Authentication
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6.3 CIPHER BLOCK CHAINING MODE

To overcome the security deficiencies of ECB, we would like a technique in which
the same plaintext block, if repeated, produces different ciphertext blocks. A simple
way to satisfy this requirement is the cipher block chaining (CBC) mode (Figure 6.4).
In this scheme, the input to the encryption algorithm is the XOR of the current plain-
text block and the preceding ciphertext block; the same key is used for each block. In
effect, we have chained together the processing of the sequence of plaintext blocks.
The input to the encryption function for each plaintext block bears no fixed relation-
ship to the plaintext block.Therefore, repeating patterns of bits are not exposed.As
with the ECB mode, the CBC mode requires that the last block be padded to a full 
bits if it is a partial block.

For decryption, each cipher block is passed through the decryption algorithm.
The result is XORed with the preceding ciphertext block to produce the plaintext
block. To see that this works, we can write

Cj = E(K, [Cj - 1 ! Pj])

b
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Figure 6.4 Cipher Block Chaining (CFB) Mode
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in = plain� outprevcipher = out

• Process
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2. Modes of operation

(3) CFB (Cipher Feedback)

• Observation


• Can be viewed as 
stream cipher

CFB

Cj = Pj ! MSBs(Oj) j = 1, Á , N

Oj = E(K, Ij) j = 1, Á , N

Ij = LSBb - s(Ij - 1) 7 Cj - 1 j = 2, Á , N

I1 = IV

Pj = Cj ! MSBs(Oj)         j = 1, Á , N

Oj = E(K, Ij)                      j = 1, Á , N

Ij = LSBb - s(Ij - 1) 7 Cj - 1 j = 2, Á , N

I1 = IV
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Although CFB can be viewed as a stream cipher, it does not conform to the
typical construction of a stream cipher. In a typical stream cipher, the cipher takes as
input some initial value and a key and generates a stream of bits, which is then
XORed with the plaintext bits (see Figure 3.1). In the case of CFB, the stream of bits
that is XORed with the plaintext also depends on the plaintext.

• Process

cipher = out� plain

Select 

s bits

in = cipherprev � shift
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2. Modes of operation

(3) CFB (Cipher Feedback)

CFB

Cj = Pj ! MSBs(Oj) j = 1, Á , N

Oj = E(K, Ij) j = 1, Á , N

Ij = LSBb - s(Ij - 1) 7 Cj - 1 j = 2, Á , N

I1 = IV

Pj = Cj ! MSBs(Oj)         j = 1, Á , N

Oj = E(K, Ij)                      j = 1, Á , N

Ij = LSBb - s(Ij - 1) 7 Cj - 1 j = 2, Á , N

I1 = IV
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Although CFB can be viewed as a stream cipher, it does not conform to the
typical construction of a stream cipher. In a typical stream cipher, the cipher takes as
input some initial value and a key and generates a stream of bits, which is then
XORed with the plaintext bits (see Figure 3.1). In the case of CFB, the stream of bits
that is XORed with the plaintext also depends on the plaintext.

CFB

Cj = Pj ! MSBs(Oj) j = 1, Á , N

Oj = E(K, Ij) j = 1, Á , N

Ij = LSBb - s(Ij - 1) 7 Cj - 1 j = 2, Á , N

I1 = IV

Pj = Cj ! MSBs(Oj)         j = 1, Á , N

Oj = E(K, Ij)                      j = 1, Á , N

Ij = LSBb - s(Ij - 1) 7 Cj - 1 j = 2, Á , N

I1 = IV

204 CHAPTER 6 / BLOCK CIPHER OPERATION

C1

IV

P1

Encrypt

Select
 s bits 

Discard
b – s bits

K

(a) Encryption

CN–1

(b) Decryption

s bits

s bits s bits

C2

P2

Encrypt

Select
s bits

Discard
b – s bits

K

s bits

s bitsb – s bits
Shift register

s bits

CN

PN

Encrypt

Select
s bits

Discard
b – s bits

K

s bits

s bitsb – s bits
Shift register

P1

IV

C1

Encrypt

Select
 s bits 

Discard
b – s bits

K

CN–1

s bits
C2

s bits
CN

s bits

s bits s bits

P2

Encrypt

Select
s bits

Discard
b – s bits

K
s bitsb – s bits

Shift register
s bitsb – s bits

Shift register

s bits

PN

Encrypt

Select
s bits

Discard
b – s bits

K

Figure 6.5 s-bit Cipher Feedback (CFB) Mode

Although CFB can be viewed as a stream cipher, it does not conform to the
typical construction of a stream cipher. In a typical stream cipher, the cipher takes as
input some initial value and a key and generates a stream of bits, which is then
XORed with the plaintext bits (see Figure 3.1). In the case of CFB, the stream of bits
that is XORed with the plaintext also depends on the plaintext.
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6.5 OUTPUT FEEDBACK MODE

The output feedback (OFB) mode is similar in structure to that of CFB. As can be
seen in Figure 6.6, it is the output of the encryption function that is fed back to the
shift register in OFB, whereas in CFB, the ciphertext unit is fed back to the shift reg-
ister. The other difference is that the OFB mode operates on full blocks of plaintext
and ciphertext, not on an -bit subset. Encryption can be expressed as

By rearranging terms, we can demonstrate that decryption works.

Pj = Cj ! E(K, [Cj - 1 ! Pj - 1])

Cj = Pj ! E(K, [Cj - i ! Pj - 1])

s
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• Observation


• Similar to CFB


• bit errors in transmission do not propagate 


• OFB is more vulnerable to a message 
stream modification attack than is CFB 


•

2. Modes of operation

(4) OFB (Output Feedback) 


cipher = out� plain

• Process

in = outprev
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2. Modes of operation

(5) CTR (Counter)

• Observation


• Efficiency、Preprocessing


• Provable security


• Simplicity

6.6 / COUNTER MODE 207
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Figure 6.7 Counter (CTR) Mode

different for each plaintext block that is encrypted.Typically, the counter is initialized
to some value and then incremented by 1 for each subsequent block (modulo ,
where is the block size). For encryption, the counter is encrypted and then XORed
with the plaintext block to produce the ciphertext block; there is no chaining. For
decryption, the same sequence of counter values is used, with each encrypted counter
XORed with a ciphertext block to recover the corresponding plaintext block. Thus,
the initial counter value must be made available for decryption. Given a sequence of
counters we can define CTR mode as follows.T1, T2, Á , TN,

b
2b

CTR
C*

N = P*
N ! MSBu[E(K, TN)]

Cj = Pj ! E(K, Tj) j = 1, Á , N - 1

P*
N = C*

N ! MSBu[E(K, TN)]

Pj = Cj ! E(K, Tj) j = 1, Á , N - 1
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different for each plaintext block that is encrypted.Typically, the counter is initialized
to some value and then incremented by 1 for each subsequent block (modulo ,
where is the block size). For encryption, the counter is encrypted and then XORed
with the plaintext block to produce the ciphertext block; there is no chaining. For
decryption, the same sequence of counter values is used, with each encrypted counter
XORed with a ciphertext block to recover the corresponding plaintext block. Thus,
the initial counter value must be made available for decryption. Given a sequence of
counters we can define CTR mode as follows.T1, T2, Á , TN,

b
2b

CTR
C*

N = P*
N ! MSBu[E(K, TN)]

Cj = Pj ! E(K, Tj) j = 1, Á , N - 1

P*
N = C*

N ! MSBu[E(K, TN)]

Pj = Cj ! E(K, Tj) j = 1, Á , N - 1

• Process
cipher = out� plain

in = counter
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2. Modes of operation

(6) Mode in Disk Encryption

•  Storage Encryption Requirements (P1619 standard, XTS-AES)


• The ciphertext is freely available for an attacker 


• The data layout is not changed on the storage medium and in transit. 


• Data are accessed in fixed sized blocks, independently from each other 


• Encryption is performed in 16-byte blocks, independently from other blocks


• There are no other metadata used, except the location of the data blocks 
within the whole data set 


• The same plaintext is encrypted to different ciphertexts at different locations, 
but always to the same ciphertext when written to the same location again 


• A standard conformant device can be constructed for decryption of data 
encrypted by another standard conformant device.  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2. Modes of operation

(6) Mode in Disk Encryption

• XTS-AES 


• XEX-based tweaked-codebook mode with 
ciphertext stealing


• Applications


• Mac OS X Lion's FileVault 2


• Windows 10's BitLocker, etc.
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2. Modes of operation

(6) Mode in Disk Encryption

• XTS-AES: Encryption of a single block
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Figure 6.9 XTS-AES Operation on Single Block

from one position to another, and an application reading the sector off the new loca-
tion will still get the same plaintext sector (except perhaps the first 128 bits). For
example, this means that an adversary that is allowed to read a sector from the sec-
ond position but not the first can find the content of the sector in the first position
by manipulating the ciphertext. Another weakness is that an adversary can flip any
bit of the plaintext by flipping the corresponding ciphertext bit of the previous
block, with the side-effect of “randomizing” the previous block.

Operation on a Single Block

Figure 6.9 shows the encryption and decryption of a single block. The operation
involves two instances of the AES algorithm with two keys. The following parame-
ters are associated with the algorithm.

Key 2

Key 1

Plaintext

Ciphertext

128位 or 

256位

128位 128位
128位

128位 or 

256位

128位
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2. Modes of operation

(6) Mode in Disk Encryption
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from one position to another, and an application reading the sector off the new loca-
tion will still get the same plaintext sector (except perhaps the first 128 bits). For
example, this means that an adversary that is allowed to read a sector from the sec-
ond position but not the first can find the content of the sector in the first position
by manipulating the ciphertext. Another weakness is that an adversary can flip any
bit of the plaintext by flipping the corresponding ciphertext bit of the previous
block, with the side-effect of “randomizing” the previous block.

Operation on a Single Block

Figure 6.9 shows the encryption and decryption of a single block. The operation
involves two instances of the AES algorithm with two keys. The following parame-
ters are associated with the algorithm.

Sector of disk

Different sector number, same plaintext ==》

Different ciphertext

• XTS-AES: Encryption of a single block
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2. Modes of operation

(6) Mode in Disk Encryption
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from one position to another, and an application reading the sector off the new loca-
tion will still get the same plaintext sector (except perhaps the first 128 bits). For
example, this means that an adversary that is allowed to read a sector from the sec-
ond position but not the first can find the content of the sector in the first position
by manipulating the ciphertext. Another weakness is that an adversary can flip any
bit of the plaintext by flipping the corresponding ciphertext bit of the previous
block, with the side-effect of “randomizing” the previous block.

Operation on a Single Block

Figure 6.9 shows the encryption and decryption of a single block. The operation
involves two instances of the AES algorithm with two keys. The following parame-
ters are associated with the algorithm.

Multiplication in

GF(2128)

Generator  in GF(2128)α

Different block number, same plaintext ==》

Different ciphertext
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2. Modes of operation

(6) Mode in Disk Encryption

• XTS-AES

6.7 / XTS-AES MODE FOR BLOCK-ORIENTED STORAGE DEVICES 213

Operation on a Sector

The plaintext of a sector or data unit is organized into blocks of 128 bits. Blocks are
labeled .The last block my be null or may contain from 1 to 127 bits. In
other words, the input to the XTS-AES algorithm consists of 128-bit blocks and
possibly a final partial block.

For encryption and decryption, each block is treated independently and
encrypted/decrypted as shown in Figure 6.9.The only exception occurs when the last
block has less than 128 bits. In that case, the last two blocks are encrypted/decrypted
using a ciphertext-stealing technique instead of padding. Figure 6.10 shows the
scheme. is the last full plaintext block, and is the final plaintext block, which
contains bits with . is the last full ciphertext block, and is the
final ciphertext block, which contains bits.s

CmCm-11 … s … 127s
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Figure 6.10 XTS-AES Mode
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As can be seen, XTS-AES mode, like CTR mode, is suitable for parallel
operation. Because there is no chaining, multiple blocks can be encrypted or
decrypted simultaneously. Unlike CTR mode, XTS-AES mode includes a nonce
(the parameter ) as well as a counter (parameter ).

6.8 RECOMMENDED WEB SITE

Recommended Web Site:

• Block cipher modes of operation: NIST page with full information on NIST-
approved modes of operation.

6.9 KEY TERMS, REVIEW QUESTIONS,AND PROBLEMS

Key Terms

ji

XTS-AES mode with null 
final block

Cj = XTS-AES-blockEnc(K, Pj, i, j) j = 0, Á , m - 1

Pj = XTS-AES-blockEnc(K, Cj, i, j) j = 0, Á , m - 1

XTS-AES mode with final
block containing bitss

Pm = MSBs(YY)
Pm - 1 = XTS-AES-blockDec(K, XX, i, m)
XX = Cm 7 CP
CP = LSB128 - s(YY)
YY = XTS-AES-blockDec(K, Cm - 1, i, m - 1)
Pj = XTS-AES-blockDec(K, Cj, i, j) j = 0, Á , m - 2

Cm = MSBs(XX)
Cm - 1 = XTS-AES-blockEnc(K, YY, i, m)
YY = Pm 7 CP
CP = LSB128 - s(XX)
XX = XTS-AES-blockEnc(K, Pm - 1, i, m - 1)
Cj = XTS-AES-blockEnc(K, Pj, i, j) j = 0, Á , m - 2

Let us label the block encryption and decryption algorithms of Figure 6.9 as

Block encryption: XTS-AES-blockEnc
Block decryption: XTS-AES-blockDec

Then, if the final block is null, XTS-AES mode is defined as follows:

(K, Cj, i, j)
(K, Pj, i, j)

Block cipher modes of 
operation

cipher block chaining 
mode (CBC)

cipher feedback mode (CFB)
ciphertext stealing

counter mode (CTR)
electronic codebook 

mode (ECB)
meet-in-the-middle attack
nonce

output feedback 
mode (OFB)

Triple DES (3DES)
XTS-AES mode

i: sector#（Tweaked），j：block#
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3. Stream cipher and RC4

Recall: stream cipher

XOR
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3. Stream cipher and RC4

Stream cipher7.4 / STREAM CIPHERS 233

Decryption requires the use of the same pseudorandom sequence:

10100000 ciphertext
01101100 key stream
11001100 plaintext

The stream cipher is similar to the one-time pad discussed in Chapter 2. The
difference is that a one-time pad uses a genuine random number stream, whereas a
stream cipher uses a pseudorandom number stream.

[KUMA97] lists the following important design considerations for a stream
cipher.

1. The encryption sequence should have a large period. A pseudorandom num-
ber generator uses a function that produces a deterministic stream of bits that
eventually repeats. The longer the period of repeat the more difficult it will be
to do cryptanalysis. This is essentially the same consideration that was
discussed with reference to the Vigenère cipher, namely that the longer the
keyword the more difficult the cryptanalysis.

2. The keystream should approximate the properties of a true random number
stream as close as possible. For example, there should be an approximately equal
number of 1s and 0s. If the keystream is treated as a stream of bytes, then all of
the 256 possible byte values should appear approximately equally often. The
more random-appearing the keystream is, the more randomized the ciphertext is,
making cryptanalysis more difficult.

3. Note from Figure 7.5 that the output of the pseudorandom number generator
is conditioned on the value of the input key. To guard against brute-force
attacks, the key needs to be sufficiently long. The same considerations that
apply to block ciphers are valid here. Thus, with current technology, a key
length of at least 128 bits is desirable.

!

Pseudorandom byte
generator

(key stream generator)

Plaintext
byte stream

M

Key
K

Key
K

k
Plaintext

byte stream
M

Ciphertext
byte stream

CENCRYPTION

Pseudorandom byte
generator

(key stream generator)

DECRYPTION

k

Figure 7.5 Stream Cipher Diagram
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3. Stream cipher and RC4

Stream cipher

• Important design considerations


• The encryption sequence should have a large 
period 


• The keystream should approximate the properties 
of a true random number stream as close as 
possible 


• The output of the pseudorandom number generator 
is conditioned on the value of the input key
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3. Stream cipher and RC4

RC4

• In 1987，by Ron Rivest

• Period: greater than 10100


• Eight to sixteen machine operations are required 
per output byte


• Used in web SSL/TLS, wireless WEP， WPA) 
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3. Stream cipher and RC4

RC4

• RC4 Algorithm

• Input：variable-length key K of from 1 to 256 

bytes 

• Process


1. Initialization of S

• S[0]=0, S[1]=1, … S[255]=255

• Initial permutation (置换)


2. Stream Generation 

• Output a byte per Permutation
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3. Stream cipher and RC4

RC4

1.  Initialization of S

7.5 / RC4 235

The RC4 algorithm is remarkably simple and quite easy to explain. A vari-
able-length key of from 1 to 256 bytes (8 to 2048 bits) is used to initialize a 256-byte
state vector S, with elements . At all times, contains a permu-
tation of all 8-bit numbers from 0 through 255. For encryption and decryption, a
byte (see Figure 7.5) is generated from S by selecting one of the 255 entries in a
systematic fashion. As each value of is generated, the entries in S are once again
permuted.

Initialization of S

To begin, the entries of are set equal to the values from 0 through 255 in ascending
order; that is, . A temporary vector, T, is also
created. If the length of the key is 256 bytes, then is transferred to T. Otherwise,
for a key of length keylen bytes, the first keylen elements of T are copied from K,
and then K is repeated as many times as necessary to fill out T. These preliminary
operations can be summarized as

/* Initialization */
for i = 0 to 255 do
S[i] = i;
T[i] = K[i mod keylen];

Next we use T to produce the initial permutation of S. This involves starting
with and going through to , and for each , swapping with another
byte in according to a scheme dictated by :

/* Initial Permutation of S */
j = 0;
for i = 0 to 255 do

j = (j + S[i] + T[i]) mod 256;
Swap (S[i], S[j]);

Because the only operation on S is a swap, the only effect is a permutation.
S still contains all the numbers from 0 through 255.

Stream Generation

Once the S vector is initialized, the input key is no longer used. Stream generation
involves cycling through all the elements of , and for each , swapping with
another byte in S according to a scheme dictated by the current configuration of S.
After is reached, the process continues, starting over again at :

/* Stream Generation */
i, j = 0;
while (true)
i = (i + 1) mod 256;
j = (j + S[i]) mod 256;

S[0]S[255]

S[i]S[i]S[i]

T[i]S
S[i]S[i]S[255]S[0]

TK
S[0] = 0, S[1] = 1, Á , S[255] = 255

S

k
k

SS[0],S[1], Á , S[255]
236 CHAPTER 7 / PSEUDORANDOM NUMBER GENERATION AND STREAM CIPHERS

25525425343210S
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S

(a) Initial state of S and T

(b) Initial permutation of S

Swap

T

K

T[i]

j = j + S[i] + T[i]

t = S[i] + S[j]

]j[S]i[S

Keylen

i

S

(c) Stream generation

Swap

j = j + S[i]

]t[S]j[S]i[S

k

i

Figure 7.6 RC4

Swap (S[i], S[j]);
t = (S[i] + S[j]) mod 256;
k = S[t];

To encrypt, XOR the value with the next byte of plaintext. To decrypt, XOR
the value with the next byte of ciphertext.

Figure 7.6 illustrates the RC4 logic.

Strength of RC4

A number of papers have been published analyzing methods of attacking RC4
(e.g., [KNUD98], [MIST98], [FLUH00], [MANT01]). None of these approaches is
practical against RC4 with a reasonable key length, such as 128 bits.A more serious
problem is reported in [FLUH01]. The authors demonstrate that the WEP proto-
col, intended to provide confidentiality on 802.11 wireless LAN networks, is
vulnerable to a particular attack approach. In essence, the problem is not with RC4
itself but the way in which keys are generated for use as input to RC4. This partic-
ular problem does not appear to be relevant to other applications using RC4 and

k
k
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3. Stream cipher and RC4

RC4

1.  Initialization of S

7.5 / RC4 235
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able-length key of from 1 to 256 bytes (8 to 2048 bits) is used to initialize a 256-byte
state vector S, with elements . At all times, contains a permu-
tation of all 8-bit numbers from 0 through 255. For encryption and decryption, a
byte (see Figure 7.5) is generated from S by selecting one of the 255 entries in a
systematic fashion. As each value of is generated, the entries in S are once again
permuted.

Initialization of S

To begin, the entries of are set equal to the values from 0 through 255 in ascending
order; that is, . A temporary vector, T, is also
created. If the length of the key is 256 bytes, then is transferred to T. Otherwise,
for a key of length keylen bytes, the first keylen elements of T are copied from K,
and then K is repeated as many times as necessary to fill out T. These preliminary
operations can be summarized as

/* Initialization */
for i = 0 to 255 do
S[i] = i;
T[i] = K[i mod keylen];

Next we use T to produce the initial permutation of S. This involves starting
with and going through to , and for each , swapping with another
byte in according to a scheme dictated by :

/* Initial Permutation of S */
j = 0;
for i = 0 to 255 do

j = (j + S[i] + T[i]) mod 256;
Swap (S[i], S[j]);

Because the only operation on S is a swap, the only effect is a permutation.
S still contains all the numbers from 0 through 255.

Stream Generation

Once the S vector is initialized, the input key is no longer used. Stream generation
involves cycling through all the elements of , and for each , swapping with
another byte in S according to a scheme dictated by the current configuration of S.
After is reached, the process continues, starting over again at :

/* Stream Generation */
i, j = 0;
while (true)
i = (i + 1) mod 256;
j = (j + S[i]) mod 256;

S[0]S[255]

S[i]S[i]S[i]

T[i]S
S[i]S[i]S[255]S[0]

TK
S[0] = 0, S[1] = 1, Á , S[255] = 255

S
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Swap (S[i], S[j]);
t = (S[i] + S[j]) mod 256;
k = S[t];

To encrypt, XOR the value with the next byte of plaintext. To decrypt, XOR
the value with the next byte of ciphertext.

Figure 7.6 illustrates the RC4 logic.

Strength of RC4

A number of papers have been published analyzing methods of attacking RC4
(e.g., [KNUD98], [MIST98], [FLUH00], [MANT01]). None of these approaches is
practical against RC4 with a reasonable key length, such as 128 bits.A more serious
problem is reported in [FLUH01]. The authors demonstrate that the WEP proto-
col, intended to provide confidentiality on 802.11 wireless LAN networks, is
vulnerable to a particular attack approach. In essence, the problem is not with RC4
itself but the way in which keys are generated for use as input to RC4. This partic-
ular problem does not appear to be relevant to other applications using RC4 and
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Once the S vector is initialized, the input key is no longer used. Stream generation
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To encrypt, XOR the value with the next byte of plaintext. To decrypt, XOR
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Figure 7.6 illustrates the RC4 logic.

Strength of RC4

A number of papers have been published analyzing methods of attacking RC4
(e.g., [KNUD98], [MIST98], [FLUH00], [MANT01]). None of these approaches is
practical against RC4 with a reasonable key length, such as 128 bits.A more serious
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col, intended to provide confidentiality on 802.11 wireless LAN networks, is
vulnerable to a particular attack approach. In essence, the problem is not with RC4
itself but the way in which keys are generated for use as input to RC4. This partic-
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3. Stream cipher and RC4

RC4

• Is RC4 secure? — See Usenix Security ’15 


• Applicated


• 1997 WEP


• 2003/2004 WPA


• 1995 SSL


• 1999 TLS


• Deprecated


• 2015 TLS
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3. Stream cipher and RC4

RC4

• Problem：The distribution is biased


• Fluhrer-McGrew biases


• Two consecutive bytes are biased towards 
certain values


• Mantin's ABSAB biases
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RC4

• Problem：Short-Term BiasesFirst: Existing Biases

10

Distribution keystream byte 2

Pr 𝒁𝟐 = 𝟎 = 𝟐
𝟐𝟓𝟔

[MS01]
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Distribution keystream byte 1 (to 256)
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3. Stream cipher and RC4

RC4

• Problem：Short-Term BiasesFirst: Existing Biases

12

Distribution keystream byte 1 (to 256)

AlFardan et al. ‘13: 
first 256 bytes biased

Short-term biases
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3. Stream cipher and RC4

RC4

• Problem：Long-Term BiasesLong-Term Biases

13

A B S A B

Fluhrer-McGrew (2000):
� Some consecutive values are biased

Examples: 0, 0 and (0, 1)

Mantin’s ABSAB Bias (2005):
� A byte pair (𝐴, 𝐵) likely reappears
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3. Stream cipher and RC4

RC4

• RC4 NOMORE attack (Usenix Security ’15)Our Goal: further kill RC4

21

New Biases Plaintext Recovery

Break WPA-TKIP Attack HTTPS
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3. Stream cipher and RC4

RC4

• RC4 NOMORE attack (Usenix Security ’15)


• Assuming there’s surrounding known plaintext


• Cracking WPA-TKIP: an hour


• HTTPS-cookie: 75 hours, 9*227 request, 4450 r/s
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3. Stream cipher and RC4

RC4

• RC4 NOMORE attack (Usenix Security ’15)


• HTTPS attack (Idea：modifying HTTP request)

Example: manipulated HTTP request

40

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; 
Trident/7.0; rv:11.0) like Gecko
Host: a.site.com
Connection: Keep-Alive
Cache-Control: no-cache
Cookie: auth=????????????????; P=aaaaaaaaaaaaaaaaa

Surrounded by known 
plaintext at both sides

Headers are 
predictable
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3. Stream cipher and RC4

RC4

• RC4 NOMORE attack (Usenix Security ’15)


• HTTPS attack
Preparation: manipulating cookies

41

Clienta.site.com fake.site.com

HTTPS insecure

Remove & inject 
secure cookies!
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3. Stream cipher and RC4

RC4

• RC4 NOMORE attack (Usenix Security ’15)


• HTTPS attackPerforming the attack!

44
Combine Fluhrer-McGrew and ABSAB biases
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3. Stream cipher and RC4

RC4

• RC4 NOMORE attack (Usenix Security ’15)


• http://www.rc4nomore.com


• video

http://www.rc4nomore.com
http://staff.ustc.edu.cn/~huangwc/crypto/The-RC4-NOMORE-Attack.mp4
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6.3 The Merkle-Hellman attack on 3DES begins by assuming a value of (Figure
6.1b). Then, for each of the possible values of , the plaintext that produces

is determined. Describe the rest of the algorithm.
6.4 With the ECB mode, if there is an error in a block of the transmitted ciphertext, only

the corresponding plaintext block is affected. However, in the CBC mode, this error
propagates. For example, an error in the transmitted (Figure 6.4) obviously
corrupts and .
a. Are any blocks beyond affected?
b. Suppose that there is a bit error in the source version of . Through how

many ciphertext blocks is this error propagated? What is the effect at the
receiver?

6.5 Is it possible to perform encryption operations in parallel on multiple blocks of plain-
text in CBC mode? How about decryption?

6.6 CBC-Pad is a block cipher mode of operation used in the RC5 block cipher, but it
could be used in any block cipher. CBC-Pad handles plaintext of any length.
The ciphertext is longer then the plaintext by at most the size of a single block.
Padding is used to assure that the plaintext input is a multiple of the block length.
It is assumed that the original plaintext is an integer number of bytes. This plain-
text is padded at the end by from 1 to bytes, where equals the block size
in bytes. The pad bytes are all the same and set to a byte that represents the
number of bytes of padding. For example, if there are 8 bytes of padding, each byte
has the bit pattern 00001000. Why not allow zero bytes of padding? That is, if the
original plaintext is an integer multiple of the block size, why not refrain from
padding?

6.7 For the ECB, CBC, and CFB modes, the plaintext must be a sequence of one or
more complete data blocks (or, for CFB mode, data segments). In other words, for
these three modes, the total number of bits in the plaintext must be a positive
multiple of the block (or segment) size. One common method of padding, if
needed, consists of a 1 bit followed by as few zero bits, possibly none, as are nec-
essary to complete the final block. It is considered good practice for the sender to
pad every message, including messages in which the final message block is already
complete. What is the motivation for including a padding block when padding is
not needed?

6.8 If a bit error occurs in the transmission of a ciphertext character in 8-bit CFB mode,
how far does the error propagate?

6.9 In discussing OFB, it was mentioned that if it was known that two different messages
had an identical block of plaintext in the identical position, it is possible to recover the
corresponding block. Show the calculation.

6.10 In discussing the CTR mode, it was mentioned that if any plaintext block that
is encrypted using a given counter value is known, then the output of the encryption
function can be determined easily from the associated ciphertext block. Show the
calculation.

6.11 Padding may not always be appropriate. For example, one might wish to store the
encrypted data in the same memory buffer that originally contained the plaintext. In
that case, the ciphertext must be the same length as the original plaintext. A mode for
that purpose is the ciphertext stealing (CTS) mode. Figure 6.12a shows an implemen-
tation of this mode.
a. Explain how it works.
b. Describe how to decrypt and .

6.12 Figure 6.12b shows an alternative to CTS for producing ciphertext of equal length to
the plaintext when the plaintext is not an integer multiple of the block size.
a. Explain the algorithm.
b. Explain why CTS is preferable to this approach illustrated in Figure 6.12b.
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d. Suppose that the algorithm uses overlapping successive bit pairs instead of
nonoverlapping successive bit pairs. That is, the first output bit is based on input
bits 1 and 2, the second output bit is based on input bits 2 and 3, and so on. What
can you say about the output bit stream?

7.7 Another approach to deskewing is to consider the bit stream as a sequence of non-
overlapping groups of bits each and output the parity of each group. That is, if a
group contains an odd number of ones, the output is 1; otherwise the output is 0.
a. Express this operation in terms of a basic Boolean function.
b. Assume, as in the preceding problem, that the probability of a 1 is . If each

group consists of 2 bits, what is the probability of an output of 1?
c. If each group consists of 4 bits, what is the probability of an output of 1?
d. Generalize the result to find the probability of an output of 1 for input groups of

bits.
7.8 What RC4 key value will leave S unchanged during initialization? That is, after the

initial permutation of S, the entries of S will be equal to the values from 0 through 255
in ascending order.

7.9 RC4 has a secret internal state which is a permutation of all the possible values of the
vector S and the two indices and .
a. Using a straightforward scheme to store the internal state, how many bits are

used?
b. Suppose we think of it from the point of view of how much information is repre-

sented by the state. In that case, we need to determine how may different states
there are, then take the log to base 2 to find out how many bits of information this
represents. Using this approach, how many bits would be needed to represent the
state?

7.10 Alice and Bob agree to communicate privately via email using a scheme based on
RC4, but they want to avoid using a new secret key for each transmission. Alice and
Bob privately agree on a 128-bit key . To encrypt a message , consisting of a string
of bits, the following procedure is used.
1. Choose a random 80-bit value 
2. Generate the ciphertext 
3. Send the bit string 

a. Suppose Alice uses this procedure to send a message to Bob. Describe how Bob
can recover the message from using .k(v ‘ c)m

m

(v ‘ c)
c = RC4(v ‘ k) ! m

v

mk

ji

n

0.5 + 0

n

b. If an adversary observes several values transmitted between (v1 ‘ c1), (v2 ‘ c2), . . .
Alice and Bob, how can he/she determine when the same key stream has been
used to encrypt two messages?

c. Approximately how many messages can Alice expect to send before the same key
stream will be used twice? Use the result from the birthday paradox described in
Appendix 11A [Equation (11.7)].

d. What does this imply about the lifetime of the key (i.e., the number of messages
that can be encrypted using )?k

k
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needed, consists of a 1 bit followed by as few zero bits, possibly none, as are nec-
essary to complete the final block. It is considered good practice for the sender to
pad every message, including messages in which the final message block is already
complete. What is the motivation for including a padding block when padding is
not needed?

6.8 If a bit error occurs in the transmission of a ciphertext character in 8-bit CFB mode,
how far does the error propagate?

6.9 In discussing OFB, it was mentioned that if it was known that two different messages
had an identical block of plaintext in the identical position, it is possible to recover the
corresponding block. Show the calculation.

6.10 In discussing the CTR mode, it was mentioned that if any plaintext block that
is encrypted using a given counter value is known, then the output of the encryption
function can be determined easily from the associated ciphertext block. Show the
calculation.

6.11 Padding may not always be appropriate. For example, one might wish to store the
encrypted data in the same memory buffer that originally contained the plaintext. In
that case, the ciphertext must be the same length as the original plaintext. A mode for
that purpose is the ciphertext stealing (CTS) mode. Figure 6.12a shows an implemen-
tation of this mode.
a. Explain how it works.
b. Describe how to decrypt and .

6.12 Figure 6.12b shows an alternative to CTS for producing ciphertext of equal length to
the plaintext when the plaintext is not an integer multiple of the block size.
a. Explain the algorithm.
b. Explain why CTS is preferable to this approach illustrated in Figure 6.12b.
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