Contemporary Cryptography: Principles and Practice

6. 3DES, Mode of Operations, and RC4

Fuyou Miao, Wenchao Huang

Web: http://staff.ustc.edu.cn/~huangwc/crypto.html

Email: mfy@ustc.edu.cn, huangwc@ustc.edu.cn

Key Points

- Multiple encryption is a technique in which an encryption algorithm is used <u>multiple times</u>.
 - In the <u>first</u> instance, plaintext is converted to ciphertext using the encryption algorithm.
 - This ciphertext is <u>then</u> used as input and the algorithm is applied again.
 - This process may be <u>repeated</u> through any number of stages.
- Triple DES makes use of three stages of the DES algorithm, using a total of two or three distinct keys.

Key Points

- A mode of operation is a technique for enhancing the effect of a crypto-graphic algorithm or adapting the algorithm for an application, such as applying a block cipher to a sequence of data blocks or a data stream.
- Five modes of operation have been standardized by NIST for use with symmetric block ciphers such as DES and AES
 - (1) electronic codebook mode (2) cipher block chaining mode
 (3) cipher feedback mode (4) output feed-back modecounter mode (5)
- A stream cipher is a symmetric encryption algorithm in which ciphertext output is produced bit-by-bit or byte-by-byte from a stream of plaintext input. The most widely used such cipher is RC4.

Contents

- 1. Multiple Encryption and Triple DES
- 2. Modes of Operations
- 3. Stream cipher and RC4

1. Multiple Encryption and Triple DES Motivation

- The cons of DES
 - Brute-force attacks
- Approaches
 - AES, or
 - use multiple encryption with DES and multiple keys
 - Question: How many encryption stages?

1. Multiple Encryption and Triple DES (1) Double DES

- The simplest form of multiple encryption has two encryption stages and two keys
- Encryption: $C = E(K_2, E(K_1, P))$
- Decryption:

$$P = D(K_1, D(K_2, C))$$

Multiple Encryption and Triple DES (1) Double DES

• Meet-in-the-middle attack (中间相遇攻击) $2\text{DES}(K_1 || K_2, M) = \text{DES}(K_2, \text{DES}(K_1, M))$ $2\text{DES}^{-1}(K_1 || K_2, C) = \text{DES}^{-1}(K_1, \text{DES}^{-1}(K_2, C))$ $\text{DES}^{-1}(K_2, C_1) = \text{DES}(K_1, M_1)$

Multiple Encryption and Triple DES (1) Double DES

- Given a known pair (M, C)
 - Encrypt *M* for all 2^{56} possible values of K_1
 - Store these results in a table and then sort the table by the values of $\underline{\text{DES}(K_1, M)}$
 - Decrypt *C* using all 2^{56} possible values of K_2
 - As each decryption is produced, check the result against the table for a <u>match</u>
 - If a <u>match</u> occurs, then test the two resulting keys against <u>a new</u> known plaintext–ciphertext pair

huangwc@ustc.edu.cn

• The complexity of the above operation: 2⁵⁷

Multiple Encryption and Triple DES (1) Double DES

• Meet-in-the-middle attack (中间相遇攻击)

 $\begin{aligned} \operatorname{Min} M_{2\mathsf{DES}}(M_1, C_1) \\ & \text{for } i = 1, \dots, 2^{56} \text{ do } L[i] \leftarrow \operatorname{DES}(T_i, M_1) \\ & \text{for } j = 1, \dots, 2^{56} \text{ do } R[j] \leftarrow \operatorname{DES}^{-1}(T_j, C_1) \\ & S \leftarrow \{ (i, j) : L[i] = R[j] \} \\ & \operatorname{Pick \ some \ } (l, r) \in S \text{ and } \operatorname{return} T_l \| T_r \end{aligned}$

For any $(i, j) \in S$ we have

$$DES(T_i, M_1) = L[i] = R[j] = DES^{-1}(T_j, C_1)$$

• Question: Is the attack correct?

1. Multiple Encryption and Triple DES (1) Double DES

- Analysis
 - For any given plaintext M
 - 2^{64} possible ciphertext values, 2^{112} possible keys
 - How many keys can produce a given ciphertext C?

• $2^{112}/2^{64} = 2^{48}$

- i.e., false alarm rate: $1 2^{-48}$
- For two blocks of known plaintext-ciphertext
 - 2^{128} ciphertext values, 2^{112} possible keys
 - How many possible ciphertexts correspond to a key on average?
 - $2^{128}/2^{112} = 2^{16}$
 - i.e., false alarm rate: 2^{-16}

 Multiple Encryption and Triple DES (2) Triple DES with Two Keys

• Triple DES with Two Keys

 $C = E(K_1, D(K_2, E(K_1, P)))$ $P = D(K_1, E(K_2, D(K_1, C)))$

 Key management standards ANS X9.17 and ISO 8732

Multiple Encryption and Triple DES (2) Triple DES with Two Keys

- Proposed attack 1 (Impractical attack?)
 - 2⁵⁶ chosen plaintext-ciphertext (<u>2⁵⁶ is impractically large</u>)
 - For K₁=0~2⁵⁶
 - Set A=0, compute P using K₁
 - Choose (P, C), then compute B
 - For K₂=0~2⁵⁶
 - Since A=0, compute **B** using K₂

Multiple Encryption and Triple DES (2) Triple DES with Two Keys

a

- Proposed attack 2
 - Known-plaintext attack
- 1. Obtain (P, C) pairs, and Create table 1
- 2. Pick an arbitrary value a
 - Repeat:
 - For *i*=0~2⁵⁶
 - Compute P_i from a and i
 - If (P_i, C_i) is in table 1
 - Compute B from i and C_i
 - Create (B, i) in table 2
- 3. For $j=0\sim 2^{56}$, compute B_j from j and a
- 4. If B_j is in table 2, output result $(i \mid j)$

 B_j

Multiple Encryption and Triple DES (3) Triple DES with Three Keys

- Although the attacks just described <u>appear</u> <u>impractical</u>, anyone using two-key 3DES may feel some concern
 - Another solution: Triple DES with Three Keys $C = E(K_3, D(K_2, E(K_1, P)))$
- PGP
- S/MIME

2. Modes of operation

Mode		Description	Application
电码本(ECB) Electronic CodeBook		cipher = out in = plain	Encryption of single values e.g., a key
密文分组链接 (CBC) Cipher Block Chaining		$\operatorname{cipher} = \operatorname{out}$ $\operatorname{in} = \operatorname{plain} \oplus \operatorname{out}_{\operatorname{p}}$	General-purpose block- oriented transmission; ^{rev} Authentication
密文反馈 (CFB) Cipher FeedBack	Select s bits	$cipher = out \oplus plain$ $in = cipher_{prev} \oplus shifted$	General-purpose block- oriented transmission; Authentication
输出反馈(OFB) Output FeedBack		$\operatorname{cipher} = \operatorname{out} \oplus \operatorname{plain}$ $\operatorname{in} = \operatorname{out}_{\operatorname{prev}}$	Stream-oriented transmission over noisy channel
计数器 (CTR) Counter		$cipher = out \oplus plain$ in = counter	General-purpose block- oriented transmission; High speed

2. Modes of operation (1) ECB (electronic codebook)

• Process

cipher = out in = plain

- Observation
 - Fit for encryption of single values
 - E.g., keys
 - Possibly insecure for lengthy messages
 - Repetitive elements

Decrypt

(b) Decryption

2. Modes of operation(2) CBC (cipher block chaining)

Process

 $cipher = out \quad \ in = plain \oplus out_{prev}$

- Observation
 - Achieves confidentiality
 - Authentication

(a) Encryption

2. Modes of operation(3) CFB (Cipher Feedback)

- Process Select s bits cipher = out \oplus plain in = cipher_{prev} \oplus shift
- Observation
 - Can be viewed as stream cipher

2. Modes of operation(3) CFB (Cipher Feedback)

2. Modes of operation(4) OFB (Output Feedback)

Process

 $\operatorname{cipher} = \operatorname{out} \oplus \operatorname{plain}$ $\operatorname{in} = \operatorname{out}_{\operatorname{prev}}$

- Observation
 - Similar to CFB
 - bit errors in transmission do not propagate
 - OFB is more vulnerable to a message stream modification attack than is CFB

(a) Encryption

(b) Decryption

2. Modes of operation (5) CTR (Counter)

Process

 $cipher = out \oplus plain$ in = counter

- Observation
 - Efficiency、 Preprocessing
 - Provable security
 - Simplicity

(b) Decryption

- Storage Encryption Requirements (P1619 standard, XTS-AES)
 - The <u>ciphertext</u> is freely <u>available</u> for an attacker
 - The data layout is not changed on the storage medium and in transit.
 - Data are <u>accessed</u> in fixed sized <u>blocks</u>, <u>independently</u> from each other
 - Encryption is performed in <u>16-byte blocks</u>, independently from other blocks
 - There are <u>no other metadata used</u>, <u>except</u> the **location of the data blocks** within the whole data set
 - The same plaintext is encrypted to <u>different ciphertexts</u> at <u>different locations</u>, but always to the <u>same ciphertext</u> when written to the <u>same location</u> again
 - A standard conformant device can be constructed for decryption of data encrypted by another standard conformant device.

- XTS-AES
 - XEX-based tweaked-codebook mode with ciphertext stealing
 - Applications
 - Mac OS X Lion's FileVault 2
 - Windows 10's BitLocker, etc.

• XTS-AES: Encryption of a single block

• XTS-AES

i: sector# (Tweaked), j: block#

Block encryption: XTS-AES-blockEnc(K, P_j, i, j) Block decryption: XTS-AES-blockDec(K, C_j, i, j)

3. Stream cipher and RC4 Recall: stream cipher

Stream Cipher

Block Cipher

3. Stream cipher and RC4 Stream cipher

3. Stream cipher and RC4 Stream cipher

- Important design considerations
 - The encryption sequence should have a <u>large</u>
 <u>period</u>
 - The keystream should approximate the properties of a <u>true random number</u> stream as <u>close</u> as possible
 - The output of the <u>pseudorandom number generator</u> is conditioned on the value of the <u>input key</u>

- In 1987, by Ron Rivest
- Period: greater than 10¹⁰⁰
- Eight to sixteen machine operations are required per output byte
- Used in web SSL/TLS, wireless WEP, WPA)

- RC4 Algorithm
 - Input: variable-length key K of from 1 to 256
 bytes
 - Process
 - 1. Initialization of S
 - S[0]=0, S[1]=1, ... S[255]=255
 - Initial permutation (置换)
 - 2. Stream Generation
 - Output a byte per Permutation

1. Initialization of S

/* Initialization */
for i = 0 to 255 do
S[i] = i;
T[i] = K[i mod keylen];

254

1. Initialization of S

/* Initialization */
for i = 0 to 255 do
S[i] = i;
T[i] = K[i mod keylen];

/* Initial Permutation of S */
j = 0;
for i = 0 to 255 do
 j = (j + S[i] + T[i]) mod 256;
 Swap (S[i], S[j]);

2. Stream Generation

/* Stream Generation */
i, j = 0;
while (true)
 i = (i + 1) mod 256;
 j = (j + S[i]) mod 256;
 Swap (S[i], S[j]);
 t = (S[i] + S[j]) mod 256;
 k = S[t];

- Is RC4 secure? See Usenix Security '15
- Applicated
 - 1997 WEP
 - 2003/2004 WPA
 - 1995 SSL
 - 1999 TLS
- Deprecated
 - 2015 TLS

- Problem: The distribution is biased
 - Fluhrer-McGrew biases
 - Two consecutive bytes are biased towards certain values
 - Mantin's ABSAB biases

• Problem: Short-Term Biases

Distribution keystream byte 2

• Problem: Short-Term Biases

Distribution keystream byte 1

Problem: Short-Term Biases

Distribution keystream byte 1 (to 256)

• Problem: Long-Term Biases

Fluhrer-McGrew (2000):

Some consecutive values are biased

Examples: (0,0) and (0,1)

Mantin's ABSAB Bias (2005):

A byte pair (A, B) likely reappears

• RC4 NOMORE attack (Usenix Security '15)

New Biases

Plaintext Recovery

Attack HTTPS

huangwc@ustc.edu.cn

Break WPA-TKIP

- RC4 NOMORE attack (Usenix Security '15)
 - Assuming there's **surrounding** <u>known plaintext</u>
 - Cracking WPA-TKIP: an hour
 - HTTPS-cookie: 75 hours, 9*227 request, 4450 r/s

• RC4 NOMORE attack (Usenix Security '15)

```
    HTTPS attack (Idea: modifying HTTP request)

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64;
Trident/7.0; rv:11.0) like Gecko
                               Headers are predictable
Host: a.site.com
Connection: Keep-Alive
Cache-Control: no-cache
Surrounded by known
         plaintext at both sides
```

- RC4 NOMORE attack (Usenix Security '15)
 - HTTPS attack

- RC4 NOMORE attack (Usenix Security '15)
 - HTTPS attack

- RC4 NOMORE attack (Usenix Security '15)
 - <u>http://www.rc4nomore.com</u>
 - <u>video</u>

Homework

- **6.4** With the ECB mode, if there is an error in a block of the transmitted ciphertext, only the corresponding plaintext block is affected. However, in the CBC mode, this error propagates. For example, an error in the transmitted C_1 (Figure 6.4) obviously corrupts P_1 and P_2 .
 - **a.** Are any blocks beyond P_2 affected?
 - **b.** Suppose that there is a bit error in the source version of P_1 . Through how many ciphertext blocks is this error propagated? What is the effect at the receiver?
- **6.8** If a bit error occurs in the transmission of a ciphertext character in 8-bit CFB mode, how far does the error propagate?
- **6.10** In discussing the CTR mode, it was mentioned that if any plaintext block that is encrypted using a given counter value is known, then the output of the encryption function can be determined easily from the associated ciphertext block. Show the calculation.
- **7.8** What RC4 key value will leave S unchanged during initialization? That is, after the initial permutation of S, the entries of S will be equal to the values from 0 through 255 in ascending order.